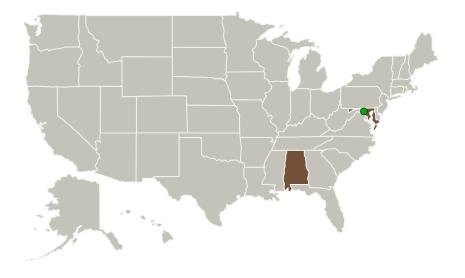
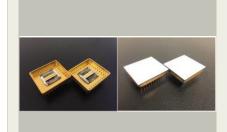
Small Business Innovation Research/Small Business Tech Transfer

Development of Diamond Vacuum Differential Amplifier for Harsh Environment Power Electronics, Phase II



Completed Technology Project (2017 - 2019)


Project Introduction

In this proposed Phase II, Scientic and Vanderbilt University will develop a novel vacuum field emission differential amplifier (VFEDA) using low electron affinity nanodiamond (ND) material as electron emitters for high-power electronic application in harsh environments. The ND-VFEDA is a fundamental circuit building block for vacuum integrated circuits (VICs) ideally suited for high radiation and space applications. The proposed high-power ND-VFEDA will be capable of operating over a wide-temperature range (-125°C to 450°C), possess tolerance to extreme doses of ionizing radiation and deliver the long-term reliability and stability needed to successfully execute environmentally stressful space science missions.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Scientic, Inc.	Lead Organization	Industry	Huntsville, Alabama
Goddard Space Flight Center(GSFC)	Supporting Organization	NASA Center	Greenbelt, Maryland

Development of Diamond Vacuum Differential Amplifier for Harsh Environment Power Electronics, Phase II

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	
Images	2
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Development of Diamond Vacuum Differential Amplifier for Harsh Environment Power Electronics, Phase II

Completed Technology Project (2017 - 2019)

Primary U.S. Work Locations		
Alabama	Maryland	

Project Transitions

April 2017: Project Start

April 2019: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140842)

Images

Briefing Chart Image

Development of Diamond Vacuum Differential Amplifier for Harsh Environment Power Electronics, Phase II Briefing Chart Image (https://techport.nasa.gov/imag e/128775)

Final Summary Chart Image

Development of Diamond Vacuum Differential Amplifier for Harsh Environment Power Electronics, Phase II

(https://techport.nasa.gov/image/133461)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Scientic, Inc.

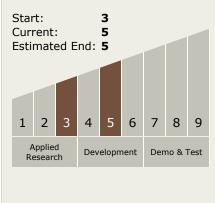
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Steven Renfrow

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Development of Diamond Vacuum Differential Amplifier for Harsh Environment Power Electronics, Phase II

Completed Technology Project (2017 - 2019)

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage
 - ☐ TX03.3 Power

 Management and
 Distribution
 - ☐ TX03.3.4 Advanced Electronic Parts

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

